Featurisation
Featurization (payn.Featurisation.Featurisation)
Orchestrates the transformation of raw chemical identifiers (SMILES) into machine-readable numerical vectors. It supports a hybrid approach, allowing the generation of new fingerprints (ECFP, MFF) alongside the ingestion of pre-calculated molecular descriptors (e.g., DFT properties).
- Bit Condensation: Implements a
condensed_bitsfunction that automatically identifies and removes bit positions with zero variance across the dataset, reducing feature sparsity and dimensionality without information loss. - Deterministic Featurization: The explicit transform pipeline ensures that feature vectors are generated identically for every run given the same configuration.
- Binary Classification: The pipeline includes a binary classification wrapper (
classify_binary) that strictly maps continuous regression targets (e.g., yield %) to binary labels (Negative/Positive) based on a fixed threshold.
Multi-Feature Fingerprinting (MFF) Reimplementation (payn.Featurisation.MFFFingerprinter)
Reimplementation of the feature generation strategy from EasyChemML, designed to maximize information capture by stacking diverse cheminformatics descriptors.
The MFF vector is a concatenation of the following molecular representations, computed using RDKit:
- Connectivity: RDKit Fingerprints (branched and linear paths, lengths 2, 4, 6, 8).
- Circular: Morgan/ECFP fingerprints (radii 0, 2, 4, 6), computed both with standard invariants and feature-based invariants (FCFP).
- Substructure: Layered Fingerprints (max paths 2, 4, 6, 8) and MACCS Keys (167 bits).
- Topology: Avalon, Atom Pairs, and Topological Torsion descriptors.
The final vector length is dynamic, determined by the base bit_length parameter (default 2048) multiplied by the 22 variable-length components, plus the fixed-length MACCS keys. A local caching mechanism (_fingerprint_cache) ensures that identical SMILES strings within a dataset yield identical vectors without redundant computation. Missing data (flagged via absence_flag) is deterministically mapped to a zero-vector of the exact expected length, preserving matrix shape integrity.
Class for featurising the raw input data.
Orchestrates the conversion of SMILES strings into numerical vectors (fingerprints) and initializes metadata columns based on the configuration.
Attributes:
| Name | Type | Description |
|---|---|---|
input_file_path |
str
|
Path to the input file. |
sheet_name |
str
|
Name of the sheet in the input file. |
columns |
List[str]
|
Columns with SMILES to be processed into fingerprints. |
method |
str
|
Fingerprinting method ('ECFP' or 'MFF'). |
bit_length |
int
|
Length of fingerprint vector. |
radius |
int
|
Radius of ECFP fingerprint. |
condensed_bits |
bool
|
If True, removes invariable bits (all 0s or all 1s). |
combined_features_column_name |
str
|
Name for the final concatenated feature column. |
meta_columns |
Dict[str, str]
|
Mapping of internal meta keys to column names. |
raw_data |
DataFrame
|
The loaded raw dataset. |
Source code in payn\Featurisation\featurisation.py
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 | |
__init__(input_file_path, sheet_name, columns, combined_feature_column_name, method='ECFP', bit_length=2048, radius=2, condensed_bits=True, meta_columns=None, regression_column_name=None, classification_threshold=None, yield_limit=None, absence_flag=None, bin_column_name=None, application_mode=None, existing_feature_columns=None, **kwargs)
Initialize the Featurisation class. Args: input_file_path (str): Path to the input file. sheet_name (str): Name of the sheet in the input file. columns (list): Columns with SMILES to be processed into fingerprints. combined_feature_column_name (str): Name for the final concatenated feature column. method (str): Fingerprinting method ('ECFP' or 'MFF'). bit_length (int, optional): Length of ECFP fingerprint. radius (int, optional): Radius of ECFP fingerprint. condensed_bits (bool, optional): Remove invariable bits across the dataset. meta_columns (dict, optional): Dictionary of meta column names. Defaults to standard keys if None. regression_column_name (str, optional): Column name for regression target. classification_threshold (float, optional): Threshold for binary classification. yield_limit (float, optional): Yield limit for classification. absence_flag (str, optional): Values indicationg missing / invalid data. bin_column_name (str, optional): Column name for binary classification. application_mode (str, optional): Application mode (e.g. 'training' or 'inference'). existing_feature_columns (str, optional): Use of existing (DFT) features instead of generating new within this featurisation. **kwargs: Additional parameters for DataLoader. Raises: ValueError: If the method is not 'ECFP' or 'MFF'.
Source code in payn\Featurisation\featurisation.py
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 | |
classify_binary(regression_column_name=None, classification_threshold=None, bin_column_name=None, labels=[0, 1], schema=None, mode=None)
Convert regression target values into binary classification labels.
Assumes regression values are mapped to a binary outcome based on a threshold.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
regression_column_name
|
str
|
Column containing target values. |
None
|
classification_threshold
|
float
|
Fraction threshold (e.g. 0.2 for 20% yield). |
None
|
bin_column_name
|
str
|
Column name to store binary labels. |
None
|
labels
|
list
|
Two labels corresponding to the bins [negative, positive]. |
[0, 1]
|
schema
|
DataSchema
|
Data schema for validating operations on dataframes. |
None
|
mode
|
str
|
Application mode ('training' or 'inference'). |
None
|
Returns:
| Type | Description |
|---|---|
DataFrame
|
A new DataFrame with an added binary classification column. |
Source code in payn\Featurisation\featurisation.py
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 | |
condense_bits(fingerprint_series)
Condense the fingerprint data by removing invariable bits.
Removes bits (columns in the feature vector) that are constant (all 0 or all 1) across the entire provided Series.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
fingerprint_series
|
Series
|
Series where each entry is a list representing a fingerprint. |
required |
Returns:
| Type | Description |
|---|---|
Series
|
A new Series with invariable bits removed. |
Warning
If this method is applied to separate data splits (e.g., train vs test) independently, it may result in feature vectors of different lengths. Ensure this is called on the global dataset before splitting.
Source code in payn\Featurisation\featurisation.py
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 | |
convert_to_morgan_fingerprints(smile, radius, bit_length)
Convert a SMILES string to Morgan fingerprints. Args: smile (str): SMILES string. radius (int): Fingerprint radius. bit_length (int): Fingerprint size. Returns: list: List representation of the fingerprint. Raises: ValueError: If the molecule is invalid.
Source code in payn\Featurisation\featurisation.py
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 | |
from_config(config, **kwargs)
classmethod
Alternative constructor that extracts parameters from a config object.
This factory method promotes the "Config as Code" pattern, ensuring consistent initialization from the central configuration dictionary.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
config
|
Dict[str, Any]
|
The global configuration dictionary. |
required |
**kwargs
|
Any
|
Additional overrides. |
{}
|
Returns:
| Type | Description |
|---|---|
Featurisation
|
An instance of Featurisation initialized from the config. |
Source code in payn\Featurisation\featurisation.py
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 | |
transform()
Orchestrate the complete featurisation pipeline.
- Identifies columns needing feature generation vs. existing features.
- Applies the selected method (ECFP/MFF) to generate fingerprints.
- Parses existing feature columns (e.g. from string representations).
- Combines all feature vectors into a single column.
- Initializes metadata columns.
Returns:
| Type | Description |
|---|---|
DataFrame
|
The fully featurised DataFrame. |
Raises:
| Type | Description |
|---|---|
ValueError
|
If the configured default featurisation method is unknown. |
Source code in payn\Featurisation\featurisation.py
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 | |