Visualisation
Visualisation (payn.Visualisation.Visualisation)
The payn.Visualisation module provides a comprehensive suite of plotting tools designed to inspect data distributions and interpret hyperparameter optimization results. It also includes a robust wrapper around Optuna’s matplotlib backend to generate a complete portfolio of optimization plots automatically.
- Yield Distribution Analysis: The
plot_yield_binsfunction generates dual-layer histograms to visualize the spread of target variables (yield). It overlays a standard frequency distribution with a color-coded classification split (Positive vs. Negative) based on a user-defined threshold. This allows for rapid visual assessment of dataset imbalance and class separability. - Automated Artifact Generation: Upon completion of an optimization study, the system auto-generates key diagnostic plots, including Optimization History (convergence tracking), Hyperparameter Importance (f-ANOVA), and Parallel Coordinate plots.
- Pairwise Interaction Analysis: To reveal complex dependencies between hyperparameters, the module automatically iterates through all parameter pairs to generate Contour and Slice plots.
- MLflow Integration: When enabled, all generated plots are automatically logged as artifacts to the associated MLflow run, creating a permanent visual record of the experiment’s search phase.
A class for visualizing data, distributions, metrics, and model performance in the PAYN project.
Attributes:
| Name | Type | Description |
|---|---|---|
data |
DataFrame
|
The dataset to visualize. |
logger |
Optional[Logger]
|
Logger instance for tracking experiments. |
Source code in payn\Visualisation\visualisation.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 | |
__init__(data, logger=None)
Initialize the Visualisation class with the dataset.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
data
|
DataFrame
|
The dataset to visualize. |
required |
logger
|
Logger
|
Instance of Logger class for logging purposes. |
None
|
Source code in payn\Visualisation\visualisation.py
25 26 27 28 29 30 31 32 33 34 | |
plot_optuna_study(study, log_to_mlflow=False)
Generate and log a comprehensive set of visualizations for an Optuna study using Matplotlib.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
study
|
Study
|
The Optuna study to visualize. |
required |
log_to_mlflow
|
bool
|
If True, log the visualizations to MLflow as artifacts. |
False
|
Source code in payn\Visualisation\visualisation.py
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 | |
plot_yield_bins(yield_column, bin_size=None, positive_threshold=None, title=None)
Plot yield bins and optionally compare with a positive threshold.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
yield_column
|
str
|
The name of the yield column in the dataset. |
required |
bin_size
|
int
|
The size of the bins for yield distribution. If not specified, only positive and negative bins will be plotted. |
None
|
positive_threshold
|
float
|
The threshold separating negative and positive data. |
None
|
title
|
str
|
The title of the plot. |
None
|
Source code in payn\Visualisation\visualisation.py
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 | |